
TUTORIAL

A Tutorial on RxODE: Simulating Differential Equation
Pharmacometric Models in R

W Wang1, KM Hallow2* and DA James1

This tutorial presents the application of an R package, RxODE, that facilitates quick, efficient simulations of ordinary
differential equation models completely within R. Its application is illustrated through simulation of design decision effects on
an adaptive dosing regimen. The package provides an efficient, versatile way to specify dosing scenarios and to perform
simulation with variability with minimal custom coding. Models can be directly translated to Rshiny applications to facilitate
interactive, real-time evaluation/iteration on simulation scenarios.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 3–10; doi:10.1002/psp4.12052; published online 19 December 2015.

The use of simulations for drug development has been

shown to be a cost-effective approach for the exploration of

multiple dosing regimens and their likely pharmacodynam-

ics effects over diverse patient populations.1–4 For instance,

simulations provide a means to assess the effects of vari-

ous loading and maintenance dosing parameters on

steady-state concentrations; effects of dosing holidays on

pharmacodynamics response; variation across patients in

drug exposure and/or response, etc. However, there are

several factors that hinder greater utilization of pharmaco-

metric simulation in drug development. It is difficult to iden-

tify a priori all possible simulation scenarios of interest, and

thus oftentimes building the set of simulations that fully

addresses the questions at hand is an iterative, collabora-

tive process between the modeler and the endusers of the

simulations—usually the clinical team. A first set of simula-

tion results are typically presented through static graphics,

and typically leads to further questions and other scenarios

to evaluate. However, performing simulations with most cur-

rently available simulation tools is cumbersome, tedious,

and time-consuming, requiring extensive custom program-

ming and moving between one software application to per-

form simulations and another application to visualize

simulations. This iterative process often involves multiple

meetings/discussions, with significant lag time between

each, and can lead to loss of momentum and lost opportu-

nities for making quantitatively driven decisions. Thus, there

is a great need for more efficient simulation processes that

facilitate interactive, real-time evaluation and iteration on

simulation scenarios.
The R software environment5 has an excellent set of

tools for analyzing and visualizing simulation results (e.g.,

lattice,6 ggplot27 packages). In addition, with the recent

release of the Shiny package,8 Web-based interfaces to R

programs can be easily generated. Thus, R provides an

ideal environment in which to perform pharmacometric sim-

ulations in real time. However, traditionally, R has lacked

extensive facilities to support modeling based on differential

equations (DE) like the ones used in pharmacokinetic/

pharmacodynamic (PK/PD) applications, although the R

package deSolve9 now provides many general-purpose DE

solvers. However, using deSolve for pharmacometric simu-

lation is still not ideal, requiring extensive custom program-

ming to facilitate the specification of dosing regimens and

sampling schedules, especially for more complex dosing

regimens. Furthermore, the convenience of specifying dif-

ferential equations in the R language presents run-time

limitations for deSolve when simulating large models or per-

forming a very large number of runs (users can hard-code

in C or Fortran their deSolve models to increase run-time

performance, but at the expense of additional low-level,

error-prone programming). Recently, efforts have increased

to develop tools to address these problems and facilitate

efficient simulation in R, including the PKPDsim10 and

Simulx11 packages. In this tutorial we present a new R

package, RxODE, that facilitates quick and efficient simula-

tions of ordinary differential equation (ODE) models in R.
RxODE provides an elegant, efficient, and versatile way

to specify dosing scenarios, including multiple routes of

administrations within a single regimen, sampling sched-

ules, etc. It also enables simulations with between-patient

variability, and minimizes the amount of custom coding

required for pharmacometric simulations. An RxODE model

is automatically translated into C, compiled into machine

code, and loaded into the running R program. This allows

for very fast execution times, relative to deSOLVE, and the

advantage in execution time increases as the number of

ODEs increases. For example, RxODE is 8–10 times faster

for a model with four ODEs, but 100 times faster for a

model with seven ODEs (see Supplementary Material for

runtime comparisons). Although similar run times may be

achieved with deSolve by writing the model in a low-level

programming language like C or Fortran and loading it

dynamically, RxODE eliminates the need for this additional

programming step and knowledge of a second program-

ming language. It is designed with pharmacometric models

in mind, but can be applied more generally to any ODE-

based model. It also provides a function for directly gener-

ating R Shiny applications, useful for interactively probing

the model; this Web-based application can then be further

1Novartis Pharmaceuticals, East Hanover, New Jersey, USA; 2University of Georgia, Athens, Georgia, USA. *Correspondence: KM Hallow (hallowkm@uga.edu)
Received 28 August 2015; accepted 15 November 2015; published online on 19 December 2015. doi:10.1002/psp4.12052

Citation: CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 3–10; doi:10.1002/psp4.12052
VC 2015 ASCPT All rights reserved

customized by the user and used to facilitate interactive
simulations. Like R, RxODE is an open source application
available in all computer platforms on which R runs.

To illustrate the application of RxODE, we will present an
example using simulations to evaluate the impact of various
design decisions on an adaptive dosing regimen. We will first
illustrate the workflow for conducting simulations in RxODE,
including specifying the model structure, dosing and sam-
pling scheme, and incorporating variability. We will show how
RxODE can be used to simulate different adaptive dosing
decision rules in individuals and in populations. Lastly, we
will demonstrate how RxODE simulations can be linked with
R Shiny to generate a user-interface that facilitates real-time
interactions and scenario evaluations with clinical teams.

CASE STUDY: EVALUATING ADAPTIVE DOSING
REGIMENS

For drugs that operate in a narrow therapeutic range, it can
be desirable or even necessary to use pharmacodynamic
measures to adjust the dose to achieve an appropriate level
of response. For example, anticoagulants such as warfarin
act by reducing the ability of the blood to form clots. But
too little clotting can result in excessive bleeding. Thus,
pharmacodynamic measurement of blood clotting ability is
used to adjust the dose within a specified range.12

Establishing a dose adjustment algorithm requires quite a
few decisions. What endpoint will be used to make dose
adjustment decisions? What is the target exposure range to
maintain this endpoint within? Should trough, peak, or both
levels be controlled? How often should measurements and
dose adjustments be made? What should be the starting
dose? Will monitoring and adaptive dosing continue indefi-
nitely, or only during an initial period after treatment initia-
tion? Simulations of these scenarios can be quite helpful in
understanding the impact of these decisions.

In this tutorial we will consider a case study for adaptive
dosing. For illustration purposes, we have chosen a system
where the PK is described by a two-compartment model,
and the PD effect is modeled with an indirect response13

(Figure 1). In order to maintain efficacy while avoiding
adverse side effects, it has been determined that inhibition
of the target should be in the range of 40–60%.

WORKFLOW FOR PERFORMING SIMULATIONS IN
RxODE

First, we will demonstrate how to set up and run a simula-
tion using RxODE. The RxODE package can be installed
from Github at https://github.com/hallowkm/RxODE (see the
Supplementary Material for installation instructions).
RxODE is made available as open source under the GNU
General Public License version 2 or later.

Figure 2 gives an overview of the workflow for performing
a simple simulation in RxODE with the model described
above. The model structure is specified through a text string
of equations. Both differential and algebraic equations are
permitted. Differential equations are specified by “d/
dt(var_name) 5 ”. Each equation is separated by a semico-
lon. All referenced, undefined quantities are assumed to be
input parameters.

#Define model
ode <- ”

C2 5 centr/V2;
C3 5 peri/V3;
d/dt(depot) 5 -KA*depot;
d/dt(centr) 5 KA*depot - CL*C2 - Q*C2 1 Q*C3;
d/dt(peri) 5 Q*C2 - Q*C3;
d/dt(eff) 5 Kin - Kout*(1-C2/(EC501C2))*eff;
“

Model parameters are defined in a named vector. Names of
parameters in the vector must be a superset of parameters in
the ODE model, and the order of parameters within the vector
is not important. Initial conditions (ICs) are defined through a
vector as well. The number of ICs must equal exactly the
number of ODEs in the model, and the order must be the
same as the order in which the ODEs are listed in the model.

Define parameters and initial conditions
params <- c(KA 5 0.3, CL 5 7, V2 5 40, Q 5 10, V3 5 300,
Kin 5 0.2, Kout 5 0.2, EC505 8)
inits <- c(0, 0, 0, 1)

The creation of an eventTable() object provides an
extremely efficient and flexible way to specify dosing and
sampling. Table 1 shows examples for generating a variety
of dosing schedules. An eventTable is generated using the
RxODE function eventTable(). The generated eventTable
object has functions that allow easy addition of dosing and
sampling events. The add.dosing() function allows specifi-
cation of the dose amount, number of doses, dosing inter-
val, compartment to dose into, rate (if an infusion), and
dosing start time. More complex dosing schedules can be
simulated by applying the add.dosing() function multiple
times. The add.sampling() function allows specification of
the time points to be included in the simulation output.

Calling the RxODE() function, the model is translated into
C code, compiled, and dynamically loaded into the running R
process. A simulation can then be performed by calling the R
model object’s function run(), with the specified parameter
vector, initial conditions vector, and event table as inputs.

Figure 1 A two-compartment pharmacokinetic model with an
indirect response pharmacodynamic model.

A Tutorial on RxODE
Wang et al.

4

CPT: Pharmacometrics & Systems Pharmacology

http://https://github.com/hallowkm/RxODE

Compile model
mod1 <- RxODE(model 5 ode, modName 5 “mod1”)
Run simulation
x <- mod1$run(params, ev, inits)

All state variables as well as other variables computed in
the model are returned in the output matrix, at the times speci-
fied in the eventTable. Thus, the simulation results are readily
available for performing calculations and generating plots in R
using any of the existing R packages (lattice, ggplot, etc).

The user can also choose to specify the absolute and/or
relative tolerance, as well as the type of solver to be used:

X <- m1$run(theta, ev, inits, stiff 5 F, atol 5 1e-8,
rtol 5 1e-6)

RxODE uses the LSODA and a Runge-Kutta integrators
for stiff and non-stiff equations, respectively. The LSODA
(Livermore Solver for Ordinary Differential Equations) For-
tran package is an automatic method switching for stiff and
non-stiff problems throughout the integration interval. For
purely non-stiff systems, RxODE uses DOP853, an explicit
Runge-Kutta method of order 8(5,3).

SIMULATING WITH VARIABILITY

RxODE provides a straightforward way to perform simulations
that incorporate parameter variability and uncertainty. A matrix
of parameter values can be generated, where each row repre-
sents one set of parameter values. R sampling functions such
as rnorm and mvrnorm can be utilized to build this matrix, but
decisions on the level(s) of uncertainty to include are left to

the discretion of the modeler, since this depends on the spe-

cific questions a given simulation is designed to address. The

following code generates parameters for 100 subjects with

correlated interindividual variability on CL and V2.

nsub <- 100# 100 subproblems
sigma <- matrix(c(0.09,0.08,0.08,0.25),2,2) # IIV covari-
ance matrix
mv <- mvrnorm(n5nsub, rep(0,2), sigma) # Sample

from covariance matrix
CL <- 7*exp(mv[,1])
V2 <- 40*exp(mv[,2])
params.all <- cbind(KA50.3, CL5CL, V25V2, Q510,

V35300, Kin50.2, Kout50.2, EC5058)

Once this parameter matrix is generated, each subpro-

blem can be simulated by looping through the parameter

matrix, using each row as an input for the simulation, and

collecting the output of each simulation in an output matrix.

res <- NULL
Loop through each row of parameter values and

simulation
for (i in 1:nsub) {

params <- params.all[i,]
x <- mod1$solve(params, ev, inits = inits)
#Store results for effect compartment
res <- cbind(res, x[, "eff"])

}

The same result can be achieved more efficiently with
the following code:
res <- apply(theta.all, 1, function(theta) mod$run(theta,

ev, inits)[, “eff”])

Figure 2 Workflow for performing a simulation with RxODE.

A Tutorial on RxODE
Wang et al.

5

www.wileyonlinelibrary/psp4

Simulation results can be then be directly analyzed and
visualized using any of the statistical and graphics tools
available within R. Figure 3 shows the results of the above
simulation when the drug is given QD for 2 days. The full
script for this simulation is available in the Supplemental
Material.

SIMULATING ADAPTIVE DOSING IN A TYPICAL
PATIENT

To return to the problem of simulating adaptive dosing,
there are many factors that must be considered in a
designing an adaptive dosing scheme. Utilizing RxODE

Table 1 The add.dosing() function provides an efficient method to specify a variety of dosing schedules

Single dose ev$add.dosing(dose510000, nbr.doses51)

Multiple doses ev$add.dosing(dose510000, nbr.doses55,

dosing.interval524)

Bid for 5 days, followed by qd for 5 days ev$add.dosing(dose510000, nbr.doses510,

dosing.interval512)

ev$add.dosing(dose520000, nbr.doses55,

dosing.interval524, start.time5120)

Infusion for 5 days,

followed by oral for 5 days

ev$add.dosing(

dose510000,

dose510000,

nbr.doses55,

dosing.to52,

rate55000

)

ev$add.dosing(dose510000,

nbr.doses55, start.time5120)

2wk-on, 1wk-off for (i in 1:ncyc)

ev$add.dosing(dose510000,

nbr.doses514, start.time5(i-1)*21*24)

A Tutorial on RxODE
Wang et al.

6

CPT: Pharmacometrics & Systems Pharmacology

within the R environment, simulations of the impact of vari-
ous factors can be quickly performed and evaluated.

In order to simulate an adaptive dosing scenario, a deci-
sion rule must be specified. We will first simulate the follow-
ing decision rule: The drug is to be dosed once daily, and
trough PD effect levels will be measured 24 hours after
each dose. The target range for the effect is 40–60% inhibi-
tion. If the measured PD effect is less than 40%, the dose
will be doubled. If the measured PD effect is greater than
60%, the dose will be cut in half. If the PD effect is between
40 and 60%, no change will be made.

The following R code is used to perform this simulation over
25 days. In brief, parameters governing the simulation are
defined, including the decision rule limits and dose adjust-
ments, number of days, starting dose, and sampling fre-
quency. Then treatment is simulated one day at a time, and
after each day the simulated trough level at the end of that day
is used to determine the dose level for the next simulated day.
This is repeated for the number of days specified, and the
results are stored in a matrix. Results contained in this matrix
can then be plotted using any available R plotting tools.

effect.limits 5 c(0, 0.4, 0.6, 9) # Decision rule limits
dose.multipliers 5 c(0.5, 1, 2) # Decision rule effects
ndays <- 25; unit.dose <- 10000; start.dose <- 1; sam-
pling.frequency <- 1 # Sample every day
Simulate each day. At the end of each day, test the
effect level, and adjust the dose level according to the
decision rule
for (i in seq(1, ndays, by 5 sampling.frequency)) {

if (i5=1) {# Initialize on first day
inits <- c(0, 0, 0, 1)
last.multiplier <- start.dose
this.multiplier <- 1

} else {# Use end of previous day as initial conditions
for next day, compare trough effect with
#decision rule limits and determine dose multiplier
accordingly
inits <- x[dim(x)[1], vars]
wh <- cut(inits[“eff”], effect.limits)
this.multiplier <- dose.multipliers[wh]

}
this.multiplier <- this.multiplier*last.multiplier # Adjust
dose
last.multiplier <- this.multiplier# Store new dose
#specify dosing and sampling
ev <- eventTable()
ev$add.dosing(dose 5 this.multiplier*unit.dose, dosing.
interval 5 24, nbr.doses 5 sampling.frequency)
ev$add.sampling(0:(24*sampling.frequency))
x <- mod1$run(params, ev, inits) # Run simulation
Compile outputs
time.total <- ev$get.EventTable()[,”time”]1(i-1)*(24)
doses <- rep(last.multiplier, length(time))
x <- cbind(x, time.total, doses);
res <- rbind(res, x)

}

Figure 4 shows the results of this simulation. After 10
days, a steady state dose that is 25% of the starting dose

0 10 20 30 40 50

0.
1

0.
3

0.
5

Time (hrs)

E
ffe

ct

0 10 20 30 40 50

0.
1

0.
2

0.
3

0.
4

0.
5

Time (hrs)

E
ffe

ct

median
5 and 95%

Figure 3 Simulation of effect for 2 days of QD dosing, correlated interindividual variability on CL and V2. (a) Individual effect profiles.
(b) Median, 5th, and 95th percentile effect profile. Since simulations are conducted in R, RxODE simulation results can easily be sum-
marized and visualized graphically.

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

E
ffe

ct
 /

D
os

e
M

ul
tip

lie
r

Effect
Dose Multiplier

Figure 4 Simulated adaptive dosing to maintain trough pharma-
codynamic inhibition within 40–60%. The solid line shows the
effect of the drug over time. The red dashed line shows the dose
multiplier over time (actual dose is the dose multiplier times the
starting dose). The gray region represents the target range for
the trough effect. A stable dose that maintains the trough effect
within the target range is reached after 10 days.

A Tutorial on RxODE
Wang et al.

7

www.wileyonlinelibrary/psp4

is reached, which maintains the trough levels within the

desired range. However, during the first 5 days the level of

inhibition is well beyond the desired target.
Alternative decision rules can easily be evaluated. For

instance, Figure 5 shows the simulation results if both

trough and peak levels are controlled within the 40–60%

range (i.e., biomarker measurements are taken at tmax of

12 hours and at trough, and dose is adjusted daily). This

full script for performing this simulation can be found in the

Appendix, but it requires only the addition of the following

line to the script above:

If effect at 12 hours is less than 0.4, cut dose in half
if (x[13, “eff”]<effect.limits[2]) {

this.multiplier <- dose.multipliers[1]
}

In this case, a stable dose is not reached. Instead, a

more complex pattern emerges, suggesting that dosing

12.5% of the starting dose, but then giving a double dose

every 5 days, could achieve the desired result.

SIMULATING ADAPTIVE DOSING WITH VARIABILITY

It may also be of interest to explore the impact of PK and

PD variability within the population on the resulting dose

trajectory and final dose. We can simulate variability, as

described above, by specifying a matrix of parameter sets,

rather than a fixed set of parameters, and looping through

this parameter matrix, performing the adaptive simulation

as described above for each set of parameters. This is

easily done by adapting the simulation of a single subject

to contain an outer for-loop that cycles through the parame-

ter matrix. Code for this simulation is available in the

Supplementary Material. Again, we assume correlated
interindividual variability on CL and V2, and simulate 100
subjects for 25 days. The resulting plots are shown in Fig-
ure 6. Trough levels for all subjects are controlled within
the specified range by the end of the time period. 62% of
subjects end at 25% of the starting dose, 35% require only
12.5%, and a few subjects (2.5%) require a higher dose
(50% of starting dose). It took at least 20 days to reach a
final dose in all subjects (compared to 10 days for the typi-
cal subject in the previous simulation).

USING SIMULATIONS TO ADDRESS QUESTIONS IN
REAL TIME

The simulations performed thus far are static, in that fixed
parameter inputs are defined, simulations are performed,
and plots are generated. Often, when the results of such
simulations are reviewed, further questions arise—what
happens if the range limits for our decision rule are relaxed
or tightened? What happens if we change the starting
dose? What happens if we sample every 2nd or 3rd day,
rather than every day?

These new questions usually require the modeler to go off
and perform new simulations, and the team must reconvene
days or weeks later to discuss new results. This introduces
significant lag time, especially since several iterations may
be required to reach a final set of simulations. Although it
may be possible to compile a massive document containing
all the permutations of scenarios of interest a priori, sifting
through this document with team members in real time can

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

E
ffe

ct
 /

D
os

e
M

ul
tip

lie
r

Effect
Dose Multiplier

Figure 5 Simulated adaptive dosing to maintaining both trough
and peak effect within the target range of 40–60%. The solid line
shows the effect of the drug over time. The red dashed line
shows the dose multiplier over time (actual dose is the dose mul-
tiplier times the starting dose). The gray region represents the
target range for both trough and peak effect. A pattern emerges,
indicating that dosing 12.5% of the starting dose, but then giving
a double dose every 5 days, would achieve this goal.

0 5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

E
ffe

ct

median
5 and 95%

5 10 15 20 25

0
20

40
60

80
10

0

Time (Days)

%
 s

ub
je

ct
s

on
 e

ac
h

do
se

1 0.5 0.25 0.125 0.0625

Figure 6 Simulation of adaptive dosing regimen in 1,000 sub-
jects, with correlated interindividual variability on CL and V2.
(a) The adaptive dosing regimen successfully controls effect lev-
els within the desired range after 5 days. (b) The dose trajectory
and final dose varies among the population, and most subjects
end on either 25% or 12.5% of the starting dose.

A Tutorial on RxODE
Wang et al.

8

CPT: Pharmacometrics & Systems Pharmacology

be a daunting task, and is not advisable, as it can lead to

confusion and/or loss of attention of key stakeholders. A bet-
ter alternative is to encase the simulation procedure in an
interactive application in which a wide range of scenarios

can be evaluated in real time, as they arise.
A major advantage of performing simulations within the R

environment is the ability to take advantage of R’s Shiny
package for developing interactive Web applications. These

Web applications can be made available to the team online,
and used in meetings to explore simulation scenarios in real
time. This is extremely advantageous in facilitating modeler–

team interactions, because it can greatly reduce the number
of iterations, separate meetings, and associated lag time.

Shiny apps are easy to write, requiring no Web develop-
ment skills and very limited programming skills. RxODE

models can be easily linked with rShiny. The package
includes a function for generating a shinyApp template from
a simple model. The user can then adapt this template for

their specific model.

genShinyApp.Template(appDir 5 “shinyExample”,

verbose 5 TRUE)
library(shiny) #Load the shiny package
runApp(“shinyExample”) #Run the example app

The function genShinyApp.Template () generates a folder
that contains the R Shiny ui.R and server.R files for the tem-
plate app, as well as an RDA file containing the saved exam-

ple model, parameters, and initial conditions. To incorporate

a different R model, the user needs can save the new model
to an RDA file and load this new file from the server.ui file.

Save the model, parameters, init values, etc. in the file
rx_shiny_data.rda to be loaded by the server.R
save(mod1, params, inits, stiff 5 TRUE, atol 5 1e8,

rtol 5 1e6, file 5 “rx_shiny_data.rda”)

To tailor the app, the only two files that need to be

altered by the user are the ui.R and server.R files. The ui.R
file can be edited to add widgets for obtaining user input
and to control the layout of the user interface. The server.R
file can be edited to control how inputs are used and how
outputs are displayed. There is excellent documentation on
developing Shiny App interfaces available online8 as well as
a previous tutorial on this topic in this journal.14

Figure 7 shows the shiny app interface for exploring dif-
ferent factors in an adaptive dosing regimen, including the
starting dose, the number of days of simulation, the fre-
quency at which the dose is adjusted, the lower and upper

limits of the range for the decision rule, and whether
trough, peak, or both levels are controlled by the decision
rule. It displays the calculated % time above and below the
decision rule limits, and it plots the effect and dose as a
function of time. As the user moves the sliders or checks
the check boxes, the outputs are adjusted interactively. The
ui.R, server.R, RxODE.run.R files and the compiled C

Figure 7 RxODE provides a function for generating interactive Shiny Apps, which can then be customized. This app allows users to
vary the dose, number of days, sampling frequency, and decision rules, and to view simulation results in real time.

A Tutorial on RxODE
Wang et al.

9

www.wileyonlinelibrary/psp4

model are available in the Supplementary Material. The
interactive app can also be accessed at http://qsp.engr.u-
ga.edu:3838/adaptiveDosing.

Thus, starting within a baseline scenario, many different
scenarios and combinations of scenarios can be quickly
explored. While the modeler will likely facilitate evaluation
of scenarios, these apps require no technical expertise or
experience with R, and thus the apps are accessible to
nontechnical partners. Also, importantly, Shiny apps can be
easily deployed online and do not require local installation
or R. This is in contrast to other software such as Berkeley
Madonna. While Berkeley Madonna can facilitate interactive
model exploration, it also requires purchase of a software
license, local installation of the software, and some user
familiarity with the software and modeling.

CONCLUSION

RxODE is an R package that provides tools for the efficient
simulation of complex dosing regimens via PK/PD models
described by ODEs. It provides great flexibility and speed in
performing simulations with variability and uncertainty. As
part of the R environment, RxODE outputs can be com-
bined with a multitude of R facilities to create advanced
static and interactive visualization displays for effective com-
munications with clinical team members and other consum-
ers. Furthermore, unlike many other simulation tools,
simulation and preparation of graphics can be conducted
completely within a single, freely available, and open-source
software. No licenses are required, and it does not require
linking with any external software. Although currently
focused on efficient simulations, RxODE can also be used
for parameter estimation through the many existing statisti-
cal estimation algorithms in R, including nonlinear mixed
effects models,14 stochastic approximation expectation-
maximization (SAEM),16 and Bayesian methods using Gibbs
sampling, e.g., JAGS.17 Future work includes developing
functionality to aid users in linking RxODE models with
these estimation algorithms in a more efficient manner.

Acknowledgments. We thank Jerry Nedelman, Kalundayan Subra-
manian, Varun Goel, and Abhijit Chakraborty.

Conflicts of Interest. The authors declare no conflicts of interest.

Author Contributions. W. W.: Developed and tested RxODE pack-
age, collaborated in development of adaptive dosing application; K.M.H.:

Aided in development of RxODE package, tested RxODE package, wrote
article, collaborated in development of adaptive dosing application; D.A.J.:
Developed and tested RxODE package, collaborated in development of
adaptive dosing application

1. Huang, X. & Li, J. Pharmacometrics: The science of quantitative pharmacology. Am.
J. Pharm. Educ. 71, 75 (2007).

2. Ette, E., Godfrey, C., Ogenstad, S. & Williams, P. Analysis of simulated clinical tri-
als. In Simulation for Designing Clinical Trials: A Pharmacokinetic/Pharmacodynamic
Modeling Perspective (eds. Kimko, H. & Duffull, S.) (Marcel Dekker, New York,
2003).

3. Riggs, M.M., Godfrey, C.J. & Gastonguay, M.R. Clinical trial simulation: efficacy trial.
In Pharmacometrics: The Science of Quantitative Pharmacology (eds. Ette, E.I. &
Williams, P.J.) 881–900 (John Wiley & Sons, Hoboken, NJ, 2007).

4. Holford, N., Ma, S.C. & Ploeger, B.A. Clinical trial simulation: a review. Clin. Pharma-
col. Ther. 88, 166–182 (2010).

5. R Core Team. R: A language and environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria. [Software] (Version 3.1.1). <http://
www.R-project.org/> (2014).

6. Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, New York,
2008).

7. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York,
2009).

8. RStudio and Inc. shiny: Web Application Framework for R. R package version 0.10.1.
<http://CRAN.R-project.org/package5shiny> (2014).

9. Soetaert, K., Petzoldt, T. & Setzer, R.W. Solving differential equations in R: package
deSolve. J. Stat. Softw. 33, 1–25. <http://www.jstatsoft.org/v33/i09/> (2010).

10. Keizer, R. PKPDsim. GitHub repository. <https://github.com/ronkeizer/PKPDsim>
(2015).

11. Inria POPIX team. Simulx: A R function of the mlxR package for computing predic-
tions and sampling longitudinal data from Mlxtran and PharmML models. <http://
simulx.webpopix.org/> (2015).

12. Kuruvilla, M. & Gurk-Turner, C. A review of warfarin dosing and monitoring. Proc.
(Bayl. Univ. Med. Cent). 14, 305–306 (2001).

13. Sharma, A. & Jusko, W.J. Characteristics of indirect pharmacodynamic models and
applications to clinical drug responses. Br. J. Clin. Pharmacol. 45, 229–239 (1998).

14. Wojciechowski, J., Hopkins, A.M. & Upton, R.N. Interactive pharmacometric applica-
tions using R and the shiny package. CPT Pharmacometrics Syst. Pharmacol. 4,
146–159 (2015).

15. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team. _nlme: Linear and
Nonlinear Mixed Effects Models_. R package version 3.1-117. <http://CRAN.R-pro-
ject.org/package5nlme> (2014).

16. Comets, E., Lavenu, A. & Lavielle, M. SAEMIX, an R version of the SAEM algorithm.
20th meeting of the Population Approach Group in Europe, Athens, Greece, Abstract
2173. <http://www.page-meeting.org/default.asp?abstract52173> (2011).

17. Plummer, M. rjags: Bayesian Graphical Models using MCMC. R package version 3-
15. <http://CRAN.R-project.org/package5rjags> (2015).

VC 2015 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the terms
of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited
and is not used for commercial purposes.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://www.wileyonlinelibrary.com/psp4)

A Tutorial on RxODE
Wang et al.

10

CPT: Pharmacometrics & Systems Pharmacology

http://www.R-project
http://www.R-project
http://www.jstatsoft.org/v33/i09
http://simulx.webpopix
http://simulx.webpopix

